Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development
نویسندگان
چکیده
Matrix metalloproteinases (MMPs) are a large family of extracellular or membrane-bound proteases. Their ability to cleave extracellular matrix (ECM) proteins has implicated a role in ECM remodeling to affect cell fate and behavior during development and in pathogenesis. We have shown previously that membrane-type 1 (MT1)-MMP [corrected] is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine and tail where GelA is expressed during Xenopus laevis metamorphosis, suggesting a cooperative role of these MMPs in development. Here, we show that Xenopus GelA and MT1-MMP interact with each other in vivo and that overexpression of MT1-MMP and GelA together in Xenopus embryos leads to the activation of pro-GelA. We further show that both MMPs are expressed during Xenopus embryogenesis, although MT1-MMP gene is expressed earlier than the GelA gene. To investigate whether the embryonic MMPs play a role in development, we have studied whether precocious expression of these MMPs alters development. Our results show that overexpression of both MMPs causes developmental abnormalities and embryonic death by a mechanism that requires the catalytic activity of the MMPs. More importantly, we show that coexpression of wild type MT1-MMP and GelA leads to a cooperative effect on embryonic development and that this cooperative effect is abolished when the catalytic activity of either MMP is eliminated through a point mutation in the catalytic domain. Thus, our studies support a cooperative role of these MMPs in embryonic development, likely through the activation of pro-GelA by MT1-MMP.
منابع مشابه
Erratum to “Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development” [Mechanisms of Development 124 (2007) 11–22]
The publisher regrets that the following errors have occurred in the above article on pages 1, 12, 13 and 16. The third sentence in the abstract on page 1 should have read 'MT1' instead of 'MT-1'. The corrected text is as follows: We have shown previously that membrane-type 1 (MT1)-MMP is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine an...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملSoluble membrane-type 3 matrix metalloprioteinase causes changes in gene expression and increased gelatinase activity during Xenopus laevis development.
Matrix metalloproteinases (MMPs) are a family of endopeptidases that cleave and remodel the extracellular matrix (ECM). Membrane-type 3 MMP (MT3-MMP) is a membrane-anchored MMP, which has recently been shown to 'shed' from the cell surface in a soluble form upon proteolytic cleavage. Shed MT-MMPs can activate gelatinase-A in vitro and have been directly linked to the metastatic potential of man...
متن کاملMembrane Type-1 Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases-2 RNA Levels Mimic Each Other during Xenopus laevis Metamorphosis
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression l...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 124 شماره
صفحات -
تاریخ انتشار 2007